
 

Collaboratively Assembling a Toolkit in KBase to Leverage 
Probabilistic Annotation and Multi-omics Data to Improve 
Mechanistic Modeling of Metabolic Phenotypes
José P. Faria1(jplfaria@anl.gov), Filipe Liu1, Patrik D'haeseleer2, Jeff Kimbrel2, Jeremy Jacobson3, Bill Nelson3, Jason McDermott3, Aimee K. Kessell4, Hugh C. 
McCullough4, Hyun-Seob Song4, Janaka N. Edirisinghe1, Nidhi Gupta1, Samuel M.D. Seaver1, Andrew P. Freiburger1, Qizhi Zhang1, Pamela Weisenhorn1, Neal Conrad1,  
Raphy Zarecki5, Matthew DeJongh5, Aaron A. Best5, KBase Team1,6,7,8, Robert W. Cottingham6, Adam P. Arkin7, Rhona Stuart2, Kirsten Hofmockel3, and Christopher S. 
Henry1

1Argonne National Laboratory, Lemont, IL; 2Lawrence Livermore National Laboratory, Livermore, CA; 3Pacific Northwest National Laboratory, Richland WA; 4University of Nebraska–Lincoln, Lincoln, NE; 
5Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel; 5Hope College, Holland, MI; 6 Oak Ridge National Laboratory, Oak Ridge, TN; 7 Lawrence Berkeley National Laboratory, 
Berkeley, CA; 8Brookhaven National Laboratory, Upton, NY.kbase.us – engage@kbase.us – @DOEKBase  

Funding: This work is supported as part of the Genomic Sciences Program DOE Systems Biology Knowledgebase 
(KBase) funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research 
under Award Numbers DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725, and DE-AC02-98CH10886.

kbase.us

Abstract:

Mechanistic understanding of biological systems relies on accurate protein annotations, which are often uncertain and error-prone. Genome-scale metabolic models (GEMs) evaluate these annotations within their biological context, offering a means to refine 
them by considering experimental observations. KBase has developed an ecosystem of tools for this purpose, starting with protein sequence annotation using various tools, and supporting external annotations. The novel ModelSEED2 (MS2) tool enhances GEM 
construction with improved energy metabolism representation and pathway curation, leading to more comprehensive models. Ensemble modeling approaches then generate multiple GEM drafts from probabilistic protein annotations, evaluated against ATP 
biosynthesis, necessary gap-filling, and omics data congruence. The best models are further analyzed, with gap-filling algorithms like OMEGGA selecting annotations that align with experimental data. This collaborative effort across KBase, µBiospheres SFA, and 
PNNL Soil SFA demonstrates improved GEM pathway completeness and annotation accuracy through applications to diverse species and datasets, showcasing the system's ability to refine our understanding of metabolic functions across organisms.

A genome annotated with RAST is inputted. Users may choose a reconstruction template, or ML classifiers 
can select them. ATP production is tested in 54 media, representing various energy biosynthesis strategies, 
with gap-filling as needed. The core metabolism model is then expanded to genome-scale.

Green squares: No extra reactions needed for ATP in specific media. Diamonds: Extra reactions needed for ATP; green for one, dark blue for two, yellow for three, dark pink for 
four. No shape: Five or more reactions needed. Light blue/green backgrounds: oxic/anoxic conditions. Dark blue: anoxic nitrate media; orange: anoxic sulfate media. Dashed 
boxes: Phylogenetic groups, labeled A-K. Data from 1,250 Bacteria and Archaea genomes. Abbreviations represent compounds like glucose (Glc), acetate (Ac), etc.Dashed line 
boxes represent phylogenetic groups of interest: A - Desulfovibrionales and Desulfobacterales; B - Thioalkalivibrio paradoxus; C - Pseudomonadaceae; D - Erwiniaceae; E - 
Rickettsiaceae; F - Synechococcales; G - Rhodococcus opacus; H - Clostridium and Fusobacterium; I - Mycoplasmataceae; J - Bacillales; K - Chlamydiales

Comparison of total gap-filled reactions for two sets of models representing 5420 genomes. Models gap-filled in GMM are shown in green. Models 
gap-filled in auxotrophy media are shown in dark blue. The difference between the GMM and auxotrophy gapfilling counts normalized by the GMM 
gapfilling counts as a third data element (red points, second axis). If this normalized gap-filling difference is close to 1, then the organism is more likely to 
be highly auxotrophic; if the number is close to zero, then the organism is likely to grow in near-minimal media

Improvements to the reconstructions pipeline, templates and KBase Apps:

Many pathways of interest for researcher in the DOE space are still poorly represented in public databases. 
Working with experts I have expanded our templates to properly model Anaerobic methanotrophic archaea 
(ANME),sulfate reducing bacteria (SRB), Methanogenesis, Methyltrophy and Iron Oxidation.

Insights from building models for a large set of phylogenetic diverse organisms:

Collaborating with the LLNL µBiospheres SFA to Build Probabilistic Annotation and Ensemble Modeling in KBase

MS2 - Improved Gapfill Metabolic Models and MS2: Model Growth Phenotypes applications in KBase

Build metabolic 
model

Import external 
annotations: KOALA, 

PathwayTools

Annotated genome

Run other KBase 
annotation tools:
DRAM, PROKKA, 

PDB

Model comparison of total model reactions and gap-filled reactions in glucose minimal media (GMM) and auxotrophy media.

Strain Glucose NAG Serine Alanine Maltose Xylose Glutamate Fructose Arabinose Sucrose Glycine 

Streptomyces (G1) 80/42 80/42 80/42 82/43 80/43 80/43 83/43 80/43

Neorhizombium (G5) 66/43 68/46 66/46 67/47 67/46 70/47 69/46 69/46

Dyadobacter (G7) 90/51 92/51 92/52 92/52 92/52 91/53 92/52 92/52 90/52 94/53

Sphingopyxis (G8) 83/37 83/37 85/37 85/37 84/38 85/37 83/37 84/38 86/37

Ensifer (G11) 77/46 78/46 76/47 75/46 76/47 76/47 77/46 79/50 78/47 76/47

Variovax (G12) 70/41 71/40 72/41 70/41 71/42 70/41 70/41 70/41

Rhodococcus (G16) 80/50 81/49 80/50 81/49 82/49 78/48 84/48 81/50

MS2 genome-scale metabolic reconstruction pipeline enabling quantitative prediction of ATP 
production

Improvements in Energy Biosynthesis Pathway Reconstruction Based on Community-Driven 
Collaborative Curation

New modeling apps in KBase

New reconstruction app implements the MS2 pipeline and uses the latest modeling templates. In 
addition, detailed  reports provide insights into the gap filling results and ATP production.
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The PNNL Soil Microbiome SFA team incorporated the 
Omics-enabled global gap-filling (OMEGGA) algorithm 
into the MS2 - Improved Gap-fill Metabolic Models 
and MS2 - Model Growth Phenotypes apps on the 
KBase platform. OMEGGA utilizes growth phenotype 
and multi-omics data to fill gaps in an organism's 
metabolic pathways and annotations, optimizing the 
metabolic model to simultaneously match multiple  
observed growth conditions and produce observed 
metabolites. The algorithm selects gene candidates 
from LLNL pipeline annotations, weighted by 
probabilities, with the highest probability gene 
chosen for each gap-filled reaction. OMEGGA refines 
these probabilities using transcriptomic, proteomic, 
or gene fitness data, prioritizing gene candidates with 
omics-based evidence for expression. The OMEGGA 
pipeline was applied in KBase to enhance MS2-built 
models for 7   PNNL Soil Microbiome SFA strains in 
the Model Soil Consortium (MSC)-2 across 11 
experimentally tested growth conditions. The table 
below illustrates gap-filled reactions/gene candidates 
added by OMEGGA in this analysis.

The LLNL µBiospheres SFA introduced a 
pipeline in KBase for probabilistic 
annotation and ensemble modeling. 
Functional annotations, from various 
algorithms inside or outside KBase, are 
integrated into a genome object with 
associated probabilities. Sampling from 
these annotations generates an ensemble 
of potential models. Probabilistic 
annotations aid in suggesting gene 
candidates for gap-filling using the 
OMEGGA tool (bottom right panel). 
Applying model ensembles predicts 
pathway flux, producing a set of flux 
solutions for statistical analysis.

Functional annotation mapping is crucial for our ensemble modeling. Annotation pipelines 
employ various ontologies, sometimes none, for protein functional annotations. Evaluation 
requires comparison to a gold standard, here, all SwissProt experimental 
evidence-associated annotations. Applying RAST, DRAM, and PROKKA to SwissProt proteins, 
using EC numbers and biochemistry, reveals discrepancies. Cross-ontology comparisons 
prove error-prone, yet they underpin our annotation assessment and ensemble modeling. 
BioBERT is now employed to enhance the curation and refinement of our annotation 
mappings, recognizing the challenges in ensuring accuracy and reliability in functional 
annotations.

From Uniprot:(2E,6E)-farnesyl diphosphate + H2O = +-T-muurolol + diphosphate EC:4.2.3.9 (79 % similarity)

● Even with “name not found” BioBert find high similarity based on incomplete EC number

Both enzymes catalyze the conversion of geranyl pyrophosphate (GPP) to different monoterpenes: (90% similarity)

● These have separate reactions associated and are not a “good” mapping.

● Additional information (alternative names and ECs) from Uniprot can help provide further context for comparison 

when EC is missing

Domain Algorithm Total 
proteins

Reaction 
match

EC 
match

No 
mapping

Not EC 
match

No 
prediction

Bacteria RAST 5203 27.21% 57.03% 27.28% 15.69% 20.39%

Fungi RAST 1725 18.79% 49.83% 37.12% 13.05% 48.46%

Other RAST 468 37.29% 63.84% 21.47% 14.69% 62.18%

Viridiplantae RAST 2741 25.39% 51.02% 22.45% 26.53% 55.31%

Metazoa RAST 5242 23.58% 51.78% 28.99% 19.23% 65.78%

Archaea RAST 671 34.45% 69.46% 18.06% 12.48% 19.97%

Bacteria DRAM_KO 5203 41.75% 53.76% 38.88% 7.36% 12.80%

Fungi DRAM_KO 1725 34.33% 47.57% 45.69% 6.74% 26.03%

Other DRAM_KO 468 38.80% 45.60% 49.60% 4.80% 46.58%

Viridiplantae DRAM_KO 2741 36.41% 52.74% 30.10% 17.16% 21.34%

Metazoa DRAM_KO 5242 25.19% 42.67% 52.87% 4.45% 4.06%

Archaea DRAM_KO 671 48.79% 61.42% 30.97% 7.61% 13.86%

Bacteria Prokka 5203 65.03% 92.66% 1.14% 6.20% 22.24%

Fungi Prokka 1725 28.97% 45.59% 18.53% 35.88% 60.58%

Other Prokka 468 43.30% 67.01% 5.67% 27.32% 58.55%

Viridiplantae Prokka 2741 32.79% 53.12% 3.37% 43.51% 64.28%

Metazoa Prokka 5242 30.00% 62.56% 5.50% 31.94% 69.48%

Archaea Prokka 671 42.86% 54.29% 1.04% 44.68% 42.62%


