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Abstract:

Mechanistic understanding of biological systems relies on accurate protein annotations, which are often uncertain and error-prone. Genome-scale metabolic models (GEMs) enable evaluation of these annotations within their biological context, offering a means 
to refine them by considering experimental observations. KBase has developed a set of tools for this purpose, including protein sequence annotation and support for external annotations. The novel ModelSEED2 (MS2) tool enhances GEM construction with 
improved energy metabolism representation and pathway curation, leading to more comprehensive models. From probabilistic protein annotations, ensemble modeling approaches generate multiple GEM drafts which are evaluated for ATP biosynthesis, 
necessary gap-filling, and omics data congruence. The best models are further analyzed, with gap-filling algorithms like OMEGGA selecting annotations that align with experimental data. This collaborative effort across KBase, µBiospheres SFA, and PNNL Soil SFA 
demonstrates improved GEM pathway completeness and annotation accuracy through applications to diverse species and datasets, showcasing the system's ability to refine our understanding of metabolic functions across organisms.

A genome annotated with RAST is inputted. Users may choose a reconstruction template, or ML classifiers 
can select one. ATP production is tested in 54 media, representing various energy biosynthesis strategies, 
with gap-filling as needed. The core metabolism model is then expanded to genome-scale.

Energy strategies from 1,250 Bacteria and Archaea GEMs. Row background colors indicate different media conditions for gap-filling: light blue = oxic, light green = anoxic, dark blue = anoxic nitrate, orange = anoxic sulfate. Abbreviations in the legend represent media 
substrates like glucose (Glc), acetate (Ac), etc. For each genome (column), the colored symbol indicates the number of gap-filled reactions needed for the GEM to produce ATP: green squares = no extra reactions needed, green diamond = one reaction, blue diamond = 
two reactions, yellow diamond = three reactions, pink diamond = four reactions, no shape = five or more reactions needed for ATP. Dashed boxes highlight phylogenetic groups of interest: A - Desulfovibrionales and Desulfobacterales; B - Thioalkalivibrio paradoxus; C - 
Pseudomonadaceae; D - Erwiniaceae; E - Rickettsiaceae; F - Synechococcales; G - Rhodococcus opacus; H - Clostridium and Fusobacterium; I - Mycoplasmataceae; J - Bacillales; K - Chlamydiales

Energy pathways define the amount of ATP an organism can derive from the environment given the availability of required nutrients. By combining this energy 
pathway knowledge with measured abundances of species within a sample, we gain understanding of resource richness of the environment, environment 
parameters like redox availability, and how organisms within the environment might work together. Some energy strategies are more synergistic than others. With 
predictions of energy pathways from genome sequences, we gain causal insights into metabolic drivers that govern microbiome structure.

Comparison of total gap-filled reactions (left axis) for two sets of models representing 5,420 genomes. Models gap-filled in GMM are shown in green. 
Models gap-filled in auxotrophy media are shown in dark blue. Red points (right axis) show the difference between the GMM and auxotrophy gap-filling 
counts normalized by the GMM gap-filling counts. If this normalized gap-filling difference is close to one, then the organism is more likely to be highly 
auxotrophic; if the number is close to zero, then the organism is likely to grow in near-minimal media

Improvements to the GEM reconstruction pipeline, templates, and KBase apps:

Many pathways of interest for DOE researchers are still poorly represented in public databases. Working with 
experts, we expanded our templates to model metabolisms of anaerobic methanotrophic archaea (ANME) and 
sulfate reducing bacteria (SRB) as well as pathways in methanogenesis, methyltrophy, and iron oxidation.

Insights from building models for a large set of phylogenetic diverse organisms:

Applying KBase tools to analyze and model Genome Resolved Open Wetlands (GROW) samples:

MS2 - Improved Gapfill Metabolic Models and MS2: Model Growth Phenotypes applications in KBase

Build metabolic 
model

Import external 
annotations: KOALA, 

PathwayTools

Annotated genome

Run other KBase 
annotation tools:
DRAM, PROKKA, 

PDB

Finding annotation gaps, classification errors, and exploring the level of auxotrophic dependencies by comparing model gap-filled reactions 
in glucose minimal media (GMM) and auxotrophy media.

Strain Glucose NAG Serine Alanine Maltose Xylose Glutamate Fructose Arabinose Sucrose Glycine 

Streptomyces (G1) 80/42 80/42 80/42 82/43 80/43 80/43 83/43 80/43

Neorhizombium (G5) 66/43 68/46 66/46 67/47 67/46 70/47 69/46 69/46

Dyadobacter (G7) 90/51 92/51 92/52 92/52 92/52 91/53 92/52 92/52 90/52 94/53

Sphingopyxis (G8) 83/37 83/37 85/37 85/37 84/38 85/37 83/37 84/38 86/37

Ensifer (G11) 77/46 78/46 76/47 75/46 76/47 76/47 77/46 79/50 78/47 76/47

Variovax (G12) 70/41 71/40 72/41 70/41 71/42 70/41 70/41 70/41

Rhodococcus (G16) 80/50 81/49 80/50 81/49 82/49 78/48 84/48 81/50

MS2 genome-scale metabolic reconstruction pipeline enabling quantitative prediction of ATP 
production

Improvements in energy biosynthesis pathway reconstruction based on community-driven 
collaborative curation

New modeling apps in KBase

A new reconstruction app implements the MS2 pipeline and uses the latest modeling templates. In 
addition, detailed  reports provide insights into the gap-filling results and ATP production.
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The PNNL Soil Microbiome SFA 
team incorporated the 
omics-enabled global gap-filling 
algorithm (OMEGGA) into two 
KBase apps: MS2 - Improved 
Gap-fill Metabolic Models and 
MS2 - Model Growth 
Phenotypes. OMEGGA utilizes 
growth phenotype and 
multi-omics data to fill gaps in an 
organism's metabolic pathways 
and annotations, optimizing the 
metabolic model to 
simultaneously match multiple 
observed growth conditions and 
produce experimentally 
observed metabolites. The 
algorithm selects gene 
candidates from KBase 
annotation tools (right), 
weighted by probabilities, with 
the highest probability gene 
chosen for each gap-filled 
reaction. OMEGGA refines these 
probabilities using 
transcriptomic, proteomic, or 
gene fitness data, prioritizing 
gene candidates with 
omics-based evidence for 
expression. The OMEGGA 
pipeline was applied in KBase to 
enhance MS2-built models for 7 
PNNL Soil Microbiome SFA 
strains in the Model Soil 
Consortium (MSC)-2 across 11 
experimentally tested growth 
conditions. The table tallies the 
number of gap-filled reactions 
for each media / the number of 
those reactions for which 
OMEGGA found a gene 
candidate.

Blue: Planktophila
Green: Methylopumilus

Cyan: Polynucleobacter
Purple: Pirellula_B

Yellow: UBA3064 (f__Burkholderiaceae)
Black: UBA954 (f__Burkholderiaceae_A)

Other

Ordination plot of intracellular fluxes within each clade of the 6-clade GROW model 

We applied our 6-clade community model 
to simulate growth across 57 GROW river 
samples with metatranscriptome data. 
These samples displayed different 
community growth rates, environmental 
interactions, and species interactions. By 
plotting the flux through each species in a 
self-organized-map (SOM), we see that 
each clade occupies a distinct metabolic 
niche, with some clades jumping amongst 
multiple niche clusters. This plot 
demonstrates how the modeling approach 
captures the distinct metabolic role of 
each of our 6 GROW clades.

Applying ModelSEED2 to build models of 2,093 GROW MAGs and selected cladesGROW samples and data loaded into KBase

En
er

gy
 

St
ra

te
gi

es

GROW MAGs in Phylogenetic Order           

The GROW Community Sequencing Project sequenced 178 metagenome 
samples with 57 metatranscriptomes. From this data, 2,093 dereplicated 
MAGs were created, loaded into KBase, and used to construct metabolic 
models (stats on right). Unfortunately, the MAG models have many gaps.

● 178 samples
● 178 metagenomes
● 57 metatranscriptomes
● 2,093 dereplicated MAGs

To mitigate gaps in MAG models, KBase developed a pangenome framework to aggregate 
annotations from many phylogenetically close genomes/MAGs into a probabilistic annotation. 
These annotations can be built from: (1) genomes/MAGs close to an input MAG; (2) genomes 
with 16S similar to an input ASV; or (3) all genome falling into a particular taxonomic group of 
interest. We applied this approach to build probabilistic annotations for 6 clades of interest in 
the GROW data. We then constructed a probabilistic model for each clade, applying the model 
to predict clade interactions using the community simulation method displayed to the left.
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Abstract:

Mechanistic understanding of biological systems relies on accurate protein annotations, which are often uncertain and error-prone. Genome-scale metabolic models (GEMs) evaluate these annotations within their biological context, offering a means to refine 
them by considering experimental observations. KBase has developed an ecosystem of tools for this purpose, starting with protein sequence annotation using various tools, and supporting external annotations. The novel ModelSEED2 (MS2) tool enhances GEM 
construction with improved energy metabolism representation and pathway curation, leading to more comprehensive models. Ensemble modeling approaches then generate multiple GEM drafts from probabilistic protein annotations, evaluated against ATP 
biosynthesis, necessary gap-filling, and omics data congruence. The best models are further analyzed, with gap-filling algorithms like OMEGGA selecting annotations that align with experimental data. This collaborative effort across KBase, µBiospheres SFA, and 
PNNL Soil SFA demonstrates improved GEM pathway completeness and annotation accuracy through applications to diverse species and datasets, showcasing the system's ability to refine our understanding of metabolic functions across organisms.

A genome annotated with RAST is inputted. Users may choose a reconstruction template, or ML classifiers 
can select them. ATP production is tested in 54 media, representing various energy biosynthesis strategies, 
with gap-filling as needed. The core metabolism model is then expanded to genome-scale.

Green squares: No extra reactions needed for ATP in specific media. Diamonds: Extra reactions needed for ATP; green for one, dark blue for two, yellow for three, dark pink for 
four. No shape: Five or more reactions needed. Light blue/green backgrounds: oxic/anoxic conditions. Dark blue: anoxic nitrate media; orange: anoxic sulfate media. Dashed 
boxes: Phylogenetic groups, labeled A-K. Data from 1,250 Bacteria and Archaea genomes. Abbreviations represent compounds like glucose (Glc), acetate (Ac), etc.Dashed line 
boxes represent phylogenetic groups of interest: A - Desulfovibrionales and Desulfobacterales; B - Thioalkalivibrio paradoxus; C - Pseudomonadaceae; D - Erwiniaceae; E - 
Rickettsiaceae; F - Synechococcales; G - Rhodococcus opacus; H - Clostridium and Fusobacterium; I - Mycoplasmataceae; J - Bacillales; K - Chlamydiales

Comparison of total gap-filled reactions for two sets of models representing 5420 genomes. Models gap-filled in GMM are shown in green. Models 
gap-filled in auxotrophy media are shown in dark blue. The difference between the GMM and auxotrophy gapfilling counts normalized by the GMM 
gapfilling counts as a third data element (red points, second axis). If this normalized gap-filling difference is close to 1, then the organism is more likely to 
be highly auxotrophic; if the number is close to zero, then the organism is likely to grow in near-minimal media

Improvements to the reconstructions pipeline, templates and KBase Apps:

Many pathways of interest for researcher in the DOE space are still poorly represented in public databases. 
Working with experts we have expanded our templates to properly model Anaerobic methanotrophic archaea 
(ANME), sulfate reducing bacteria (SRB), Methanogenesis, Methyltrophy and Iron Oxidation.

Insights from building models for a large set of phylogenetic diverse organisms:

Applying KBase Tools to Analyzing and Modeling Genome Resolved Open Wetlands (GROW) Samples 

MS2 - Improved Gapfill Metabolic Models and MS2: Model Growth Phenotypes applications in KBase

Build metabolic 
model

Import external 
annotations: KOALA, 

PathwayTools

Annotated genome

Run other KBase 
annotation tools:
DRAM, PROKKA, 

PDB

Model comparison of total model reactions and gap-filled reactions in glucose minimal media (GMM) and auxotrophy media.

Strain Glucose NAG Serine Alanine Maltose Xylose Glutamate Fructose Arabinose Sucrose Glycine 

Streptomyces (G1) 80/42 80/42 80/42 82/43 80/43 80/43 83/43 80/43

Neorhizombium (G5) 66/43 68/46 66/46 67/47 67/46 70/47 69/46 69/46

Dyadobacter (G7) 90/51 92/51 92/52 92/52 92/52 91/53 92/52 92/52 90/52 94/53

Sphingopyxis (G8) 83/37 83/37 85/37 85/37 84/38 85/37 83/37 84/38 86/37

Ensifer (G11) 77/46 78/46 76/47 75/46 76/47 76/47 77/46 79/50 78/47 76/47

Variovax (G12) 70/41 71/40 72/41 70/41 71/42 70/41 70/41 70/41

Rhodococcus (G16) 80/50 81/49 80/50 81/49 82/49 78/48 84/48 81/50

MS2 genome-scale metabolic reconstruction pipeline enabling quantitative prediction of ATP 
production

Improvements in Energy Biosynthesis Pathway Reconstruction Based on Community-Driven 
Collaborative Curation

New modeling apps in KBase

New reconstruction app implements the MS2 pipeline and uses the latest modeling templates. In 
addition, detailed  reports provide insights into the gap filling results and ATP production.
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The PNNL Soil Microbiome SFA 
team incorporated the 
Omics-enabled global gap-filling 
(OMEGGA) algorithm into the 
MS2 - Improved Gap-fill 
Metabolic Models and MS2 - 
Model Growth Phenotypes 
apps on the KBase platform. 
OMEGGA utilizes growth 
phenotype and multi-omics 
data to fill gaps in an organism's 
metabolic pathways and 
annotations, optimizing the 
metabolic model to 
simultaneously match multiple  
observed growth conditions 
and produce observed 
metabolites. The algorithm 
selects gene candidates from 
the KBase annotation pipeline 
and tools (right), weighted by 
probabilities, with the highest 
probability gene chosen for 
each gap-filled reaction. 
OMEGGA refines these 
probabilities using 
transcriptomic, proteomic, or 
gene fitness data, prioritizing 
gene candidates with 
omics-based evidence for 
expression. The OMEGGA 
pipeline was applied in KBase to 
enhance MS2-built models for 7   
PNNL Soil Microbiome SFA 
strains in the Model Soil 
Consortium (MSC)-2 across 11 
experimentally tested growth 
conditions. The table below 
illustrates gap-filled 
reactions/gene candidates 
added by OMEGGA in this 
analysis.

Blue: Planktophila
Green: Methylopumilus

Cyan: Polynucleobacter
Purple: Pirellula_B

Yellow: UBA3064 (f__Burkholderiaceae)
Black: UBA954 (f__Burkholderiaceae_A)

Other

Ordination plot of intracellular fluxes within each clade of the 6-clade GROW model 

We applied our 6-clade community model 
to simulate growth across the 57 GROW 
river samples with metatranscriptome 
data. These samples displayed very 
different community growth rates, 
environmental interactions, and species 
interactions. By plotting the flux through 
each species in a deep-learning-based 
ordination plot, we see that each clade 
occupies a distinct phylogenetic niche, 
with some clades jumping amongst 
multiple niche clusters. This plot 
demonstrates how the modeling approach 
has captured the distinct metabolic role of 
each of our 6 GROW clades.

Applying the ModelSEED2 to Building Models of 2093 GROW MAGs and Selected CladesGROW Samples and Data Loaded to KBase
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GROW MAGs in Phylogenetic Order           

GROW Community Sequencing Project sequenced  178 metagenome 
samples with 57 metatranscriptomes. From this data, 2093 dereplicated 
MAGs were created, loaded into KBase, and applied to construct metabolic 
model (model stats on right). Unfortunately, MAG models has many gaps.

● 178 samples
● 178 metagenomes
● 57 metatranscriptomes
● 2093 dereplicated MAGs

To mitigate gaps in MAG models, KBase developed a pangenome framework to aggregate 
annotations from many phylogenetically close genomes/MAGs into a probabilistic annotation. 
These annotations can be built from: (1) genomes/MAGs close to an input MAG; (2) genomes 
with 16s similar to an input ASV; or (3) all genome falling into a particular taxonomic group of 
interest. We applied this approach to build probabilistic annotations for 6 clades of interest in the 
GROW dataset. We then constructed a probabilistic model for each clade, applying the model to 
predict clade interactions using the community simulation method displayed to the left.


